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Abstract This paper presents an invariant discrete wavelet transform that enables
point-to-point (aligned) comparison among all scales, contains no phase shifts, relaxes
the strict assumption of a dyadic-length time series, deals effectively with boundary
effects and is asymptotically efficient. It also introduces a new entropy-based method-
ology for the determination of the optimal level of the multiresolution decomposition,
as opposed to subjective or ad-hoc approaches used hitherto. As an empirical appli-
cation, the paper relies on wavelet analysis to reveal the complex dynamics across
different timescales for one of the most widely traded foreign exchange rates, namely
the Great Britain Pound. The examined period covers the global financial crisis and the
Eurozone debt crisis. The timescale analysis attempts to explore the micro-dynamics
of across-scale heterogeneity in the second moment (volatility) on the basis of market
agent behavior with different trading preferences and information flows across scales.
New stylized properties emerge in the volatility structure and the implications for the
flow of information across scales are inferred.
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1 Introduction

In contrast to the classical Fourier analysis, in which the frequency content of the
underlying time series is assumed to be stationary along the time axis, wavelets are
defined over a finite domain and unlike the Fourier transform they are localized both in
time and in scale. This property, as opposed to the trigonometric or complex exponen-
tial functions in Fourier transform, makes wavelets ideal for analysing nonstationary
signals especially those incorporating transient phenomena or singularities. Wavelet
analysis works with “translates” and “dilates” of a single local function, the so-called
“mother wavelet”, which is locally defined with compact support or decays suffi-
ciently fast. However, the existence of wavelets is not a trivial analytical issue and the
construction of classes of compactly supported wavelets was first addressed by
Daubechies (1988). In that work a reliable methodology for obtaining orthogonal
wavelet bases by translating and dilating the mother wavelet was provided. As a
mother wavelet with compact support is located in a finite interval, the analysis of a
singularity is performed by considering only those translates of the mother wavelet that
overlap the singularity. Daubechies (1988) contribution was followed by the devel-
opment of multiresolution analysis by Mallat (1989) and Coifman and Wickerhauser
(1992).

Technically, Fourier and wavelet methods involve the projection of a signal onto
an orthonormal set of components. Fourier projections are most naturally defined
for functions restricted to L2(0, 2π) i.e., the set of square integrable functions in
the interval (0, 2π), because Fourier series have infinite energy but finite power when
extended to being defined over the entire real axis. Based on the complex superposition
of individual harmonics, the hypothesis is that over any segment of the time series the
exact same frequencies hold at the same amplitudes, namely the signal is homogeneous
over time. On the contrary, the basis functions in wavelet analysis are defined in
L2(R) and are not necessarily homogeneous over time, meaning that they have narrow
compact support so that they rapidly converge to zero as time approaches infinity.
Such basis functions are called wavelets, in distinction to the trigonometric functions
traditionally associated with waves.

The flurry of interest in economic applications of wavelets emerged in the mid-
90s mostly by Ramsey and his collaborators. Ramsey et al. (1995) pursued a wavelet
approach in detecting self-similarity in US stock prices. In addition, Ramsey and Lam-
part (1998a,b) used a wavelet-based scaling method to investigate the relationship and
causality between money, income and expenditure. In other studies Goffe (1994) illus-
trated the application of wavelets to nonstationary macroeconomic data, in particular
for the detection of discontinuities and the occurrence of sharp cusps. In recent works,
Almasri and Shukur (2003) address the causal relation between spending and revenue
at different timescales, while Gençay et al. (2002) look into dependencies between
money, income, expenditure, growth and inflation. Fernandez (2005) deals with the
estimation of systematic asset risk. Finally, it is also worth mentioning a stream of
papers utilizing wavelet methodology to address theoretical econometric issues and
devise new statistical approaches Lee J. and Y. Hong (2001).
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1.1 Time Scaling in Economics Revisited

In natural sciences the utilization of sequences of timescales in the analysis of different
modes of behavior, or different relationships between variables, is very common. In
economics the notion of timescale is related to time period segmentation and the
examined relationships are described as short-run and long-run, or broadly under the
term scaling laws (Brock 1999). The scale decomposition often reveals the presence of
deterministic regularities or statistical properties of the conditional moments that are
seemingly independent of the scale details. However, in wavelet literature the concept
of time scaling or “dilation” is quite different from that in economics. The different
scales of the wavelet decomposition contain contributions of the signal in different
frequencies (although timescale and frequency are not identical concepts as it is further
explained below). Based on the selected function space, the time series are analysed
into “fine” and “coarse” resolution components extracted from the application of
“father” and “mother” wavelets. The former represent the smooth and low-frequency
parts of a signal, whereas the latter incorporate the detailed and high-frequency features
(Percival and Walden 2000).

While frequency analysis (Fourier) results in projecting the entire signal onto
ever lower frequencies, time scaling with wavelets is concerned with projecting a
localized component of the signal onto an increasingly broader base. Moreover, the
basis functions are orthogonal across scales, so that the total variation/energy of
the signal at any given point in time is obtained by adding the constituent com-
ponents extracted at each of the scales. Although at first sight timescale could
directly correspond to frequency there is only an indirect connection between these
two concepts, as indicated by Priestley (1996). Intuitively, in a naïve interpreta-
tion, wide-support wavelets can be associated with low frequencies, while high-
frequency analysis requiring high sampling rates can be provided by narrow-support
components.

The multiresolution features of wavelet decomposition can be useful in econometric
analysis. Through wavelet decomposition, the low-frequency content of the data that
“captures” the true dynamic relationships can be extracted and the high-frequency
fluctuations that might distort the underlying dependencies of the economy can be
removed. This paper contributes to the literature by introducing an invariant transform
that enables point-to-point comparison among all scales, contains no phase shifts,
relaxes the strict assumption of a “dyadic-length” time series, deals effectively with
“boundary effects” and is asymptotically efficient. In addition, beyond the existing
practice that has utilized subjective judgment in considering the appropriate “depth”
of the wavelet analysis, a new entropy-based methodology is introduced to determine
the optimal level of decomposition. Finally, an empirical application in financial time
series—in particular exchange rates—is pursued. These series are inherently charac-
terized by chaotic patterns, fat tails and long-memory, particularly at high sampling
frequencies. The results provide evidence of complex heterogeneous dynamics across
and within different scales.

The paper develops as follows: Sect. 2 provides an overview of multiresolution
methodology and presents a new shift-invariant discrete wavelet transform. Finally,
Sect. 3 provides an empirical application and Sect. 4 the concluding remarks.

123



www.manaraa.com

234 S. D. Bekiros

2 The Shift-Invariant Discrete Wavelet Transform (SIDWT)

2.1 Preliminaries

Definition 1 Letψ (.)be a real valued continuous function such that
∫ ∞
−∞ ψ (t) dt = 0

and
∫ ∞
−∞ ψ (t)2 dt = 1; then ψ (.) defines a wavelet.

Considering that h = (h0, . . . , hM−1) is a finite length wavelet filter, the properties
of continuous wavelet functions such as integration to zero and unit energy, in discrete
time are equivalently given by

∑M−1
m=0 hm = 0 and

∑M−1
m=0 h2

m = 1. The wavelet filter
is orthogonal to its even shifts for all nonzero integersn

M−1∑

m=0

hmhm+2n =
∞∑

m=−∞
hmhm+2n = 0 (1)

Definition 2 If g = (g0, . . . , gM−1) denotes the complement low-pass (scaling) filter
of the wavelet (high-pass) filter then according to Percival and Walden (2000), the
scaling filter coefficients are estimated based on the quadrature mirror relationship1

gm = (−1)m+1 hM−1−mform = 0, . . . ,M − 1.

Theorem 1 The T-length vector of the wavelet coefficients w for a time series y =
{yt }T

t=1 with dyadic length
(
T = 2J

)
is obtained as w = Wy. The T × T orthonormal

matrix W defines the Discrete Wavelet Transform (DWT).

The vector of wavelet coefficients can be decomposed into J + 1 vectors

w = [w1,w2, . . . ,wJ , sJ ]T (2)

where w j is a T/2 j -length vector of wavelet coefficients corresponding to the scale
of length a j = 2 j−1 and sJ is a T/2J -length vector of scaling coefficients associated
with scale 2aJ . The W matrix comprises the wavelet and scaling filter coefficients on a
row-by-row representation. Hereby, the vector of zero-padded unit scale wavelet filter
coefficients is defined in reverse order by h1 = [

h1,T −1, h1,T −2, . . . , h1,1, h1,0
]T ,

where the coefficients h1,0, . . . , h1,M−1 are derived from an orthonormal wavelet
family of length M and all values M < t < T are zero. If h1 is circularly
shifted by factors of two, h(2)1 = [

h1,1, h1,0, h1,T −1, h1,T −2, . . . , h1,3, h1,2
]T
, h(4)1

= [
h1,3, . . . , h1,0, h1,T −1, h1,T −2, . . . , h1,5, h1,4

]T then the T/2 × T matrix W1 is
defined as the collection of T/2 circularly shifted versions of h1, namely W1 =
[
h(2)1 ,h(4)1 , . . . ,h(T/2−1)

1 ,h1

]T
. In general, matrices W j are defined by circularly

shifting the vector h j (the vector of zero-padded scale j wavelet filter coefficients)
by factors of2 j . Additionally, SJ is a column vector with all elements equal to
1/

√
T (McCoy and Walden 1996). The T × T dimensional matrix W is W =

1 Quadrature mirror filters are used in engineering for perfect reconstruction of a signal without aliasing
effects.
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[W1W2 . . .WJ SJ ]T . From matrix W the wavelet filter coefficients for scales 1, . . . , J
are computed via the Inverse Discrete Fourier Transform (IDFT). Specifically, given
the transfer functions of the wavelet (Hj,k) and scaling filters (G J,k), the wavelet for
scale a j = 2 j−1 is estimated as the inverse DFT2

h j,l =F−1 {
Hj,k

}=F−1

⎧
⎨

⎩
H1,2 j−1k mod T

j−2∏

l=0

G1,2m k mod T

⎫
⎬

⎭
, k =0, . . . , T −1 (3)

with length M j = (
2 j − 1

)
(M − 1) + 1. In the same way, the scaling filter gJ for

scale aJ is derived as the inverse DFT of G J,k

gJ,l = F−1 {
G J,k

} = F−1

{

G J,k =
J−1∏

l=0

G1,2m k mod T

}

, k = 0, . . . , T − 1 (4)

Mallat (1989) introduced the “pyramid algorithm” for the implementation of the DWT.
The following proposition proves how the coefficients are produced.

Proposition 1 In the Mallat algorithm the data yt are filtered using h1 and g1, then
the outputs are subsampled to half their original lengths and the subsampled filter
output from h1 accounts for the wavelet coefficients. This process is repeated on the
subsampled output from g1 filter.

The first step of the pyramid algorithm begins by convolving the data with each
filter to obtain the following wavelet w1,t = ∑M−1

m=0 hm y2t+1−m mod T and scaling
coefficients s1,t = ∑M−1

m=0 gm y2t+1−m mod T where t = 0, 1, . . . , T/2 − 1. This also
includes a downsampling operation, in that every other value of the input vector is
removed. Consequently, the T -length vector of observations has been high-and low-
pass filtered to obtain T/2 coefficients. The second step of the algorithm starts by
“initializing” the sample now to be the scaling coefficients s1 and apply the aforemen-
tioned filtering procedure to obtain the second level of wavelet and scaling coefficients
asw2,t = ∑M−1

m=0 hms1,2t+1−m mod T and s2,t = ∑M−1
m=0 gms1,2t+1−m mod T respectively

with t = 0, 1, . . . , T/4 − 1. By saving all wavelet coefficients and the final level of
scaling coefficients the decomposition becomes w = [w1w2s2]T . This procedure is
repeated up to J = log2 (T ) times and provides the vector of wavelet coefficients in
Eq. (2).

The inversion of the DWT is performed by upsampling the final wavelet and scaling
coefficients, convolving them with their respective filters and adding the resulting
vectors. Upsampling the vectors wJ and sJ of the final DWT level produces the new
vectors w0

J = [
0wJ,0

]T and s0
J = [

0sJ,0
]T . Now the vector of scaling coefficients sJ−1

is given by sJ−1,t = ∑M−1
m=0 hmw

0
J,t+m mod 2+

∑M−1
m=0 gms0

J,t+m mod 2 with t = 0, 1 and
it is twice that of sJ . This is repeated until the first level of all coefficients has been
upsampled, in order to produce the original vector of data observations, i.e.,

2 The modulus operator is required in order to deal with the boundary of a finite length vector of observa-
tions.
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yt =
M−1∑

m=0

hmw
0
1,t+m mod T +

M−1∑

m=0

gms0
1,t+m mod T t = 0, 1, . . . , T − 1.

The DWT results in the additive decomposition of the time series. The most impor-
tant feature of the multiresolution analysis is the reverse process of signal synthesis.

Proposition 2 Let D j = WT
j w j define the wavelet detail corresponding to changes

in the series y at scale a j for the level j = 1, . . . , J . The coefficients w j = W j y
represent the part of the signal due to wavelet analysis at scale a j , while WT

j w j is
the part of the wavelet synthesis attributable to scale a j .

The final wavelet detail DJ+1 = ST
J SJ is equal to the sample mean of the T = 2J

observations (Gençay et al. 2002). The multiresolution analysis is defined for each
observation yt as the linear combination of wavelet detail coefficients, i.e., yt =∑J+1

j=1 D j,t t = 0, . . . , T − 1. Similarly, A j = ∑J+1
k= j+1 Dk is the cumulative sum of

the variations of the details and is defined as the j-th level wavelet approximation
for 0 ≤ j ≤ J with AJ+1 being a vector of zeros. The j-th level wavelet rough
R j = ∑ j

k=1 Dk, 1 ≤ j ≤ J + 1 incorporates the remaining lower-scale details
where R0 is the zero vector. Overall, the vector of observations may be decomposed
for all j through a wavelet approximation and rough as

y = A j +
j∑

k=1

D j = A j + R j (5)

Definition 3 Orthonormality of the matrix W implies, as in case of DFT, that the DWT

is an efficient, variance preserving transform3,4 i.e., ‖w‖2 = ∑J
j=1

∑T/2 j −1
t=0 w2

j,t

+s2
J,0 = ∑T −1

t=0 x2
t = ‖y‖2.

Consequently, the energy ‖y‖2 is decomposed on a scale-by-scale basis as ‖y‖2 =
∑J

j=1

∥
∥w j

∥
∥2 + ‖sJ ‖2, where

∥
∥w j

∥
∥2 is the energy of y attributed to variance at scale

a j , and ‖sJ ‖2 is the remaining energy in aJ scales or higher. As DT
j D j = wT

j w j and

AT
J AJ = sT

J sJ apply for 1 ≤ j ≤ J (due to orthonormality of W and S), an equal

decomposition is ‖y‖2 = ∑J
j=1

∥
∥D j

∥
∥2 + ‖AJ ‖2.

2.2 Formal Description of the SIDWT

The classical (decimated) DWT involves subsampling of the filter output to half the
original length. This leads to a serious drawback, namely the transform is not invariant
in the real-axis. Specifically, the DWT of a shifted signal is not the shifted version

3 The energy of a vector—proportionate to variance—is defined as the sum of its squared coefficients.
4 It can be also proven via matrix operations: ‖y‖2 = yT y = (Ww)T Ww = wT WT Ww = wT w =
‖w‖2.
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of the DWT of the signal.5 Alternatively, an undecimated DWT can be implemented
without the subsampling technique. According to Coifman and Donoho (1995) undec-
imated versions of the DWT could handle any sample size T , while the J-th order
DWT restricts the sample size to a multiple of 2J . Moreover, they are invariant to
circularly shifting the time series, a property that does not hold for the DWT. Finally,
an undecimated wavelet variance estimator is asymptotically more efficient than the
DWT estimator (Percival 1995). Hence, in this study a new variation of the undeci-
mated DWT, namely the Shift-Invariant DWT (SIDWT) is proposed via the following
theorem.

Theorem 2 The SIDWT is defined as follows: Let y be an arbitrary T - length vector
of observations. The (J + 1) T - length vector of SIDWT coefficients w̃ is obtained as
w̃ = W̃y, where w̃ is a (J + 1) T × T matrix. The SIDWT coefficient vector, as in
DWT, is organized into J + 1 vectors

w̃ = [
w̃1, w̃2, . . . , w̃J , s̃J

]T (6)

Let w̃ j is a T/2 j - length vector of wavelet coefficients associated with the scale
of length a j = 2 j−1 and s̃J is a T/2J - length vector of scaling coefficients corre-
sponding to a length scale of 2J = 2aJ . The direct conversion to DWT could be
implemented for a dyadic length

(
T = 2J

)
sample, via subsampling and rescaling of

the SIDWT. The converted DWT wavelet coefficients are w j,t = 2 j/2w̃ j,2 j (t+1)−1

with t = 0, . . . , T/2 j − 1, and the scaling coefficients sJ,t = 2J/2s̃J,2J (t+1)−1t =
0, . . . , T/2J − 1. In correspondence to the orthonormal matrix of the DWT, the
SIDWT matrix W̃ comprises J + 1 submatrices of T × T dimension expressed

as w̃ =
[
w̃1w̃2 . . . w̃J S̃J

]T
. The SIDWT utilizes the rescaled filters from DWT,

h̃ j = h j/2 j and g̃J = gJ /2J with ( j = 1, . . . , J ). The T × T submatrix w̃1 is
constructed by circularly shifting the rescaled wavelet filter vector h̃1 by integer units

to the right, i.e., w̃1 =
[
h̃(1)1 , h̃(2)1 , h̃(3)1 , . . . , h̃(T −2)

1 , h̃(T −1)
1 , h̃1

]T
and it can be inter-

preted as the circularly shifted version of DWT submatrix W1. The other matrices
w̃2, . . . , w̃J are similarly constructed through replacing h̃1 by h̃ j .

Proposition 3 The new implementation algorithm starts with the data yt , which is no
longer limited to dyadic length, and filters with h̃1 and g̃1 to obtain the T -length vectors
of wavelet and scaling coefficients w̃1 and s̃1, yet without utilizing the downsampling
operation.

In the first step the data is convolved with each filter to obtain the wavelet w̃1,t =
∑M−1

m=0 h̃m yt−m mod T and scaling coefficients s̃1,t = ∑M−1
m=0 g̃m yt−m mod T where t =

0, 1, . . . , T −1. The second step of the SIDWT algorithm uses the “new” data, namely
the scaling coefficients s̃1 from the previous step, and proceeds with the application
of filtering to obtain the second level of wavelet and scaling coefficients i.e., w̃2,t =

5 Shifting a signal simply means delaying its start in the real-axis. In mathematical terms, delaying a
function is represented by f (t − d).
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∑M−1
m=0 h̃m s̃1,t−m mod T and s̃2,t = ∑M−1

m=0 g̃m s̃1,t−m mod T with t = 0, 1, . . . , T − 1.

The resulting T -length decomposition is w̃ = [
w̃1w̃2s̃2

]T . The procedure is repeated
up to J = log2 (T ) times in order to provide the full vector of SIDWT coefficients
in Eq. (6). In the Inverse transform the final-level wavelet and scaling coefficients are
convolved with their respective filters and the resulting vectors are added up. Therefore,
the vectors w̃J and s̃J of the final level are filtered and combined to produce the
vector of scaling coefficients s̃J−1 in J − 1 level s̃J−1,t = ∑M−1

m=0 h̃mw̃J,t+m mod T +
∑M−1

m=0 g̃m s̃J,t+m mod T where t = 0, 1, . . . , T − 1. The length of s̃J−1 is the same as
s̃J . The algorithm is repeated until the first level of coefficients produce the original
vector of observations yt = ∑M−1

m=0 h̃mw̃1,t+m mod T + ∑M−1
m=0 g̃m s̃1,t+m mod T with

t = 0, 1, . . . , T − 1.
It is emphasized that the SIDWT associates the wavelet details and approximation

coefficients with zero-phase filters, thus the details and approximations correspond
directly to the original time series in perfect alignment.

Corollary 1 The multiresolution analysis in SIDWT assumes yt = ∑J+1
j=1 D̃ j,t , t =

0, . . . , T − 1 where D̃ j,t is the t- th element of D̃ j = w̃T
j w̃ j for j = 1, . . . , J .

The SIDWT wavelet approximations and rough are respectively defined as ÃJ,t =
∑J+1

k= j+1 D̃k,t and R̃ j,t = ∑ j
k=1 D̃k,t t = 0, . . . , T − 1 and the original time series

are given by

y = Ã j +
j∑

k=1

D̃ j = Ã j + R̃ j (7)

Percival and Mofjeld (1997) proved that undecimated, invariant transforms are energy
(variance) preserving transforms. Thus, SIDWT is an efficient transform and the total
variance of the time series is given by ‖y‖2 = ∑J

j=1

∥
∥w̃ j

∥
∥2 + ‖s̃J ‖2.

2.3 Non-dyadic Length and Time-Invariance

The SIDWT relaxes the assumption of a dyadic length time series which is not always
applicable in practice. In case of the DWT a “signal extension” process is usually
employed, which involves ”padding” the time series with values and increase its length
to the next power of two. Ogden (1997) reports various methods such as padding
with zeros, repeating the last observation (polynomial of order zero), higher-order
polynomials, periodic extension, and numerical integration.

Corollary 2 SIDWT is time-invariant (as proven in Theorem 2) as opposed to the
classical DWT which exhibits some translation in time even after applying signal
extension.

(a) SIDWT is not an orthogonal basis, thus it produces an over-determined (redun-
dant) representation of the series that has advantages in regards to statistical
inference.
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(b) As the SIDWT entails approximate zero-phase filtering, the details at each
timescale and the approximation contain the same number of observations and
line up in time with the original series.

This property makes the SIDWT a particularly useful tool in the analysis of time-
dependent processes.

2.4 “Periodic Extension” Pattern for Boundary Distortions

Furthermore, the application of the DWT to finite-length time series brings up the
crucial issue of “boundary distortions”, which concerns the problematic estima-
tion of the remaining wavelet coefficients when the end of the series is encoun-
tered in the wavelet transform. To deal with end-of-sample distortions, the border
should be treated differently from the other parts of the signal. Although various
theoretical methods are available to tackle this problem, they are rather inefficient
from a practical viewpoint (Cohen et al. 1993). A common practical technique
applied mainly in Fourier analysis involves either taking observations from the ini-
tial part of a T -length periodic series to finish computations at the end, or the entire
series are duplicated/reflected about the last observation. This may be reasonable for
some time series with strong seasonal effects but cannot be applied universally in
practice.

Lemma 1 Based on Theorem 2 (and Proposition 3) the proposed SIDWT employs a
specialized “periodic extension” pattern to deal with boundary effects.

(a) If the series length is odd, the series is first extended by adding an extra-sample
equal to the last value on the right. Then a minimal periodic extension is performed
on each side. The extension mode used for the inverse SIDWT is the same to ensure
a perfect reconstruction.

(b) Using these boundary coefficients, the SIDWT retains its numerically stability
(Herley 1995).

2.5 Entropy-Based Determination of the Optimal Decomposition Level

In the literature the depth (level) of the multiscale wavelet decomposition is usually
determined arbitrarily or based on some economic rationale with regard to the exam-
ined time scales. Alternatively in this study an optimal decomposition is pursued with
respect to the minimization of an entropy-related criterion. Classical entropy-based
criteria describe information-relevant properties for an accurate representation of a
given signal (Coifman and Wickerhauser 1992).

Lemma 2 The depth (level) of the SIDWT is estimated on the basis of the sample
length, the selected wavelet class and the boundary-distortion method (based on The-
orem 2). The entropy of each level is estimated step-wise and it is compared with the
one from the previous level. If it is decreased then the new decomposition “reveals”
interesting, non-redundant information and the decomposition continues.
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Corollary 3 The optimal level is determined at the minimum value of the Shannon
entropy-related criterion.6 In the following expressions y is the signal and ci represents
the details and the j-th level approximation coefficient of y for scales j = 1, . . . , J
in an orthonormal basis. The entropy E must be an additive cost function such that
E(0) = 0 and E(y) = ∑

j E(c j ). The entropy for the coefficients in each level is
defined as

EShannon(c j ) = −c2
j · log(c2

j ) (8)

and thus for the entire signal is EShannon(y) = −∑
j c2

j · log(c2
j ), with the convention

0 · log(0) = 0.

2.6 Wavelet Filter Class Selection

The selection of a particular wavelet filter class is not trivial in practice and depends
upon the complexity of the spectral density function and the underlying features of
the data in the time domain. Optimally, in most data sets a balance between frequency
localization and time localization should be pursued. According to Gençay et al. (2001)
and (2002), a moderate length wavelet filter (e.g., length eight) adequately captures the
stylized features of financial data. Given that the wavelet basis functions are used to
represent the information contained in the time series, they should “mimic” its under-
lying features.7 Usually, smoothness and (a)symmetry are the most crucial factors in
selecting suitable wavelet basis functions (Gençay et al. 2002; Ramsey and Lampart
1998a).

Assumption(s) 1 (a) The SIDWT coefficients are calculated from the Daubechies
family of compactly supported wavelet filters, which are well localized in time
(Daubechies 1992). The wavelet and scaling coefficients of the Daubechies class
are w1,t = ∑M−1

m=0 hm y2t−m and s1,t = ∑M−1
m=0 gm y2t−m respectively with t =

M/2, 1 + M/2, . . . , T/2.
(b) The Daubechies wavelet filter of length eight, (db8) is selected in order to balance

smoothness, length and symmetry (Jensen and Whitcher 2000; Gençay et al.
2001).

(c) It achieves an “ideal compromise” between competing requirements in that
it has reasonably narrow, compact support, is fairly smooth, has vanishing

6 The Shannon entropy criterion shows a downward trend until a minimum value—corresponding
to a “threshold” scale level—is reached and then it begins to rise revealing that further sig-
nal decomposition “contains” redundant information. The maximum level of decomposition tried in
this study is ten, based on the appropriate “translation” of the wavelet scales into economic time
horizons.
7 For instance, if the data appear to be constructed of piecewise linear functions, then the Haar wavelet may
be the most appropriate choice, while if the data is fairly smooth, then a longer filter such as the Daubechies
asymmetric wavelet filter may be desired.
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moments, is twice differential, nearly symmetric and has a moderate degree of
flexibility.8

3 Empirical Application

3.1 Data Description and Econometric Analysis

The time series used for the empirical exercise is the Great Britain Pound (GBP)
daily closing rates (5 days) denoted relative to United States dollar (USD) i.e., the
GBP/USD ratio. The currency returns are defined as rt = log (Pt ) − log (Pt−1),
where Pt is the closing level on day t , and the volatility series as the absolute value
of the returns ut = |rt | as in Jensen and Whitcher (2000) and Gençay et al. (2002).
The data sample span the period from January 5, 1999 to May 10, 2010, namely from
the introduction of the Euro until the ECB and the IMF agreed on a program of bond
purchases and an defence package of 750,000e in order to deal with the Eurozone
sovereign-debt crisis. The multiresolution analysis is performed in sub-periods based
on the application of stability tests for structural breakpoints as well as on economic
foundation. In this study March 10, 2000 is used as the first breakpoint, when the
technology NASDAQ Composite index peaked at 5,048.62 (intra-day peak 5,132.52),
more than double its value just a year before, corresponding to the date when the dot-
com bubble “burst” Greenspan (2007). This date also coincides with the after-Euro era.
Then, the global financial crisis of 2008 is examined that was triggered by a liquidity
shortfall in the United States banking system and resulted in the collapse of large
financial institutions, turbulence and downturns in stock markets around the world
Krugman (2009). The crisis began to affect the financial sector in February 22, 2007,
when HSBC, the world’s largest bank of 2008, wrote down its holdings of subprime-
related mortgage-backed-securities by $10.5 billion. This particular date is used as the
second breakpoint. Finally, the sovereign debt crisis in early 2010 concerning Eurozone
countries such as Greece, Spain, Ireland, and Portugal is also investigated. It led to
the widening of bond yield spreads on credit default swaps between these countries
and other Eurozone members, especially regarding Germany. The date December 8,
2009 is set as the third breakpoint, corresponding to the first Greek rating cut by
Fitch. Further to the economic justification the breakpoint selection is statistically
tested via the application of Chow’s test (Chow 1960) for known (imposed) breaks
and the cumulative sum (CUSUM) test (Brown et al. 1975) for unknown points. These
tests are applied both on the GBP return and volatility series to investigate also for
volatility breaks (McConnell and Perez-Quiros 2000; Dijk et al. 2005). All possible
calendar combinations are examined, i.e. one imposed breakpoint of March 10, 2000,
February 22, 2007 or December 8, 2009 separately, then two points (3 cases) and
finally all three points/dates of structural change. The Chow test in this paper uses the
methodology of McConnell and Perez-Quiros (2000) who estimate an AR(1) model
with a constant for each sub-sample separately, to see whether there are significant

8 In the empirical part, alternative choices of wavelet classes were also applied, but the results were very
robust to such changes and the current selection appeared to be the most balanced.
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differences in the estimated equations. A significant difference indicates a structural
change in the relationship. Two statistics for the Chow test are used, namely the
log-likelihood ratio χ2 and the F-statistic, which are both based on the comparison
of the restricted and unrestricted sum of squared residuals. For the GBP, the null
hypothesis of no structural change for the one break of February 22, 2007 as well as
for the specific case of the two breaks of February 22, 2007 and December 8, 2009,
is rejected at 10 % significance level. The CUSUM test is based on the cumulative
sum of the recursive residuals. It detects parameter instability—though marginally—
around the region of the February 22, 2007 break (e.g., 1,950–2,150 observations).
Regarding the volatility series, the Chow test rejects the null of no structural change
at 1 % level for the February 22, 2007 breakpoint. Moreover, it does not reject the
null hypothesis for the one break of December 8, 2009. In addition, it rejects the
null for all date combinations not including December 8, 2009. Finally, the CUSUM
test strongly detects parameter instability around the February 22, 2007 breakpoint.
The selected breakpoints have also been verified with the Bai and Perron (2003)
and Zivot and Andrews (1992) tests. Thus, the breakpoint of February 22, 2007 is
finally selected for the return and volatility series, offsetting statistical and economic
motivation. Overall, the examined sub-periods are the following: PI: January 5, 1999
to February 21, 2007 (2,122 observations), PII: February 22, 2007 to May 10, 2010
(838 observations). In addition, the entire sample period PT: January 5, 1999 to May
10, 2010 (2,960 observations) is comparatively investigated in an extensive robustness
analysis.

The descriptive statistics for the all series are presented in Table 1. The Jarque-Bera
multiplier in all periods is statistically significant, thereby implying that the return
distributions are not normal. In general, kurtosis for returns in all periods is larger
than normal which indicates the presence of fat tails, extreme observations and pos-
sibly volatility clustering. Kurtosis is also significantly higher than normal for the
distribution of the absolute returns. As indicated by skewness, GBP returns have a
longer left tail. Based on the Ljung-Box Q-statistic, the hypothesis that all correla-
tion coefficients of the returns up to 12 are jointly zero is rejected in the majority of
cases. Therefore, it can be inferred that the return series present some linear depen-
dence. On the contrary, the statistically significant serial correlations in the volatility
series imply nonlinear dependence due possibly to clustering effects or conditional
heteroscedasticity. The differences between the two periods PI and PII are quite evi-
dent in Table 1 where a significant increase in variance can be observed in PII as
well as increased fat-tailedness of the return and volatility distributions reflected in
the higher kurtosis. Additionally, PII witnessed many occasional negative spikes as it
can be inferred from the skewness of GBP returns. Volatility series also present more
spikes in PII. The results from testing nonstationarity are also presented in Table 1.
Specifically, the Augmented Dickey–Fuller (ADF) and Phillips-Perron (PP) unit root
tests are applied to the log-levels, returns and volatility series. The lag lengths were
selected using the Schwartz Bayesian Information Criterion (SIC), while for the PP
test the bandwidth was automatically selected using Newey and West (1994) method
with Bartlett kernel. The GBP variable appears to be nonstationary in log-levels and
stationary in log-returns based on the reported p-values. Specifically, the ADF and PP
tests indicate that the null of a unit root cannot be rejected at 1 % for the log-levels
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in all periods, regardless of whether a constant and linear trend or only a constant is
included in the deterministic component. Furthermore, both tests show that the log-
returns and volatility series are stationary as the null can be soundly rejected for all
periods.9 The combined results from the unit root tests suggest that the investigated
log-levels appear to be I (1) processes.

3.2 Multiscale Analysis based on the SIDWT

As opposed to Fourier transforms and to classical or other undecimated DWTs where
the depth (level) of the multiscale wavelet decomposition is determined arbitrarily
or based on trial and error, for SIDWT it is estimated on the basis of the boundary-
distortion method and the minimum-entropy decomposition criterion. The step-wise
entropy of each level is calculated and it is compared to the one from the previous
level. If it is decreased then the new decomposition “reveals” non-redundant infor-
mation and the decomposition continues. The results of the optimal entropy-based
decomposition level for the GBP returns and volatility are presented in Table 2. For
the GBP FX returns the optimal decomposition level is the seventh for PT and PI
and the sixth in PII, while for the volatility series the minimum value of the Shannon
entropy criterion is calculated at the fourth scale. Moreover, the appropriate “depth”
of the wavelet analysis corresponds to a specific “translation” of the wavelet scales
into time horizons. Table 3 provides insight on the relation between SIDWT lev-
els and time scales for the time series. Each scale of the wavelet multiscale analy-
sis corresponds to a frequency interval, or equally an interval of periods, therefore
each scale is associated with a range of time horizons that span from several days to
one year. For instance, the wavelet detail D2 is associated with a frequency range of
4–8 days or 0.8–1.6 weeks, while D4 (optimal level for the volatility series) is asso-
ciated with approximately one month.10 At scale level j = 7, the frequency range
corresponds to a cycle length between a period of 2.1–4.3 quarters, namely between
a semester and a yearly variation. Hence, the GBP returns series are decomposed at
scale level j = 7 therefore “containing” up to yearly frequencies, while the volatil-
ity series are analyzed up to the j = 4 scale which is associated with a frequency
range of 0.8–1.6 weeks (1 month). The economic interpretability is also substanti-
ated. In particular, due to the nature of the series it is reasonable to investigate the
returns from daily to yearly frequencies, whereas up to monthly variations for the
volatility.11

9 Due to the nature of volatility, it is assumed that there is no time trend in the series in the long run
(Nikkinen et al. 2006). However, the unit root tests were also performed with a time trend and the results
remain unchanged. Moreover, the test results are generally not sensitive to the number of lags used.
10 Thereafter the notation D j (and not the D̃ j used in Sect. 3) corresponds to the SIDWT details, to enhance
readability.
11 In empirical applications, quarterly, semi-annual or yearly volatility is not interesting for the economic
analysis of high-frequency (daily) FX series, nor “traded” in currency markets, as opposed to daily or
weekly volatility. However, the analysis of the returns up to yearly variations can be very useful in detecting
FX market linkages with macroeconomic fundamentals (e.g., GDP, CPI, Interest rates) or in producing
multi-step ahead price forecasts.
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Table 2 Minimum-entropy
decomposition level

Bold numbers report the
corresponding optimal level of
decomposition for each time
series. It indicates the minimum
value of the Shannon entropy
criterion for the wavelet details
and j-th level approximation

Wavelet level GBP/USD returns GBP/USD volatility

PT PI PII PT PI PII

Raw 0.966 0.538 0.428 0.966 0.538 0.428

1 0.998 0.789 0.446 0.429 0.328 0.199

2 1.033 0.768 0.503 0.453 0.357 0.205

3 0.988 0.698 0.530 0.448 0.364 0.204

4 1.062 0.777 0.523 0.392 0.289 0.193

5 1.000 0.863 0.435 0.424 0.295 0.227

6 0.942 0.912 0.367 0.573 0.494 0.287

7 0.715 0.456 0.407 1.377 0.643 1.203

8 1.623 0.533 1.224 3.009 0.512 2.500

9 1.244 0.788 0.803 7.482 1.320 6.648

10 1.629 0.939 1.296 15.405 2.029 9.764

Table 3 Translation of wavelet scales into time horizons

Wavelet scale Time horizons

Days Weeks Months Quarters Years

a1 2–4
a2 4–8 0.8–1.6
a3 8–16 1.6–3.2
a4 16–32 3.2–6.4 0.8–1.6
a5 32–64 6.4–12.8 1.6–3.2 0.5–1.1
a6 64–128 12.8–25.6 3.2–6.4 1.1–2.1
a7 128–256 25.6–51.2 6.4–12.8 2.1–4.3 0.5–1.1

Each scale of the SIDWT corresponds to a frequency interval, or conversely an interval of periods, and thus
each scale is associated with a range of time horizons. The time horizons are expressed in base units (daily
frequency) as follows: week = 5 trading days, month = 20 trading days, quarter = 60 trading days, year =
240 trading days

The wavelet approximation and details of the returns and volatility series, as well
as the original time series in all periods are depicted in Figs. 1 and 2. As it can be
demonstrated from the graphs, a major advantage of the new SIDWT representation—
as opposed to the classical and other undecimated DWTs—is that it contains no phase
shifts in the wavelet components, which enables aligned temporal comparison among
all scales. Furthermore, the employment of Daubechies (db8) class in the implemen-
tation of the SIDWT decomposition reveals that the wavelet details display a com-
plicated structure that cannot be attributable to an oscillation at a single frequency,
that for example a Short-time Fourier transform with an arbitrary window function
could capture. Moreover, the Haar class usually utilized in DWT application would
fail to “mimic” the underlying features of the time series as they are not constructed
of piecewise linear functions. The use of the Daubechies (db8) in the SIDWT bal-
ances smoothness, length and symmetry, in that it has reasonably narrow and compact
support, it has vanishing moments and it is twice differential and nearly symmetric.
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Fig. 1 SIDWT Decomposition of GBP returns. The results of SIDWT (db8) multiresolution wavelet
analysis include the D1–D7 wavelet details and the 7-th level approximation A7. The raw signal is also
displayed
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Fig. 2 SIDWT Decomposition of GBP volatility. The results of SIDWT (db8) multiresolution wavelet
analysis include the D1–D4 wavelet details and the 7-th level approximation A4. The raw signal is also
displayed
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Firstly, the low- and high-frequency components of GBP returns and volatility are
examined. In case of the return series for all periods there are no significant differences
in high- and low-frequency dynamics. All components display a fairly low oscillation
amplitude. Basically, there is no notable “activity” in high scales at all levels as a
direct result of the trend-removal procedure, albeit in all periods the return fluctua-
tions are amplified after the beginning of 2008, i.e. after entering the financial crisis
period, where a regime switch occurs. The increased volatility is mostly manifested
in detail D1 of the GBP volatility series in PII, which is associated with oscillations of
2–4 days period length, but also in the second, third and fourth scale corresponding to
oscillations with a period of approximately 1 week, 1.6–3.2 weeks and 0.8–1.6 months
respectively. Furthermore, in PT of the volatility series there is a turbulent pattern in
the high frequency harmonic associated with 2–4 days, which might be attributed to
traders with short-term trading horizons. The switching regime appearing in the GBP
return details immediately after the crisis outbreak is also depicted in PII details of
the volatility.12 It is notable that persistent oscillations are present in all detail com-
ponents of the volatility in PI, indicating a near-cyclical pattern in low scales for the
pre-crisis period and probably “neutral” mean-reverting trading behavior. This is also
depicted in the A4 approximation in the volatility series in PI, but not in PII and PT,
where possibly a split in the long-run trend component signifies the entry in the high
volatility regime of the Eurozone debt crisis. One important aspect is the SIDWT
scale-dependent duration of regime switches. Specifically, a high volatility regime
initiated by a market information flow appears to persist longer at the lower frequency
associated also with longer trading horizons, as opposed to a high-frequency horizon.
This is demonstrated for the GBP volatility. Overall, the duration of regimes seems
to be longer for high-scale horizons whereas low-scale behavior results in frequent
regime changes.

Secondly, the “vertical” heterogeneity in the variability pattern is examined across
scales. In case of GBP returns all scales seem to contribute to the raw series variance.
Likewise, the D1 detail volatility in all periods dominates over the aggregate raw signal
oscillation amplitude, albeit other frequency components incorporate lower informa-
tion. It appears that a low frequency shock embedded in the long-run approximation
wavelet coefficients, might lead a high frequency response by a short time period, as in
the case of the crisis emergence shown in the volatility series. Consequently, vertical
heterogeneity demonstrates trader behavior with different time horizons. The highest
approximation scale of the trading mechanism “involves” fundamentalists who trade
on longer time horizons, whilst at low scales short-term traders operate with time
horizons of a few days up to a week or month. Each trader class possesses a homoge-
neous behavior, but the combination of these classes in all time-scales generates the
aggregate time series. In financial markets, a high-scale shock penetrates through all
scales, while a low-scale shock fades out quickly and has no impact in the long-run
dynamics. The most characteristic example of a low-frequency shock that affected all

12 The structural changes in the wavelet approximations mentioned throughout this section have also been
tested with the Chow’ and CUSUM tests as well as with the Bai and Perron (2003) and Zivot and Andrews
(1992) tests. For the details, the switching regimes have been verified via a Markov-switching model with
two regimes, using an AR(1) specification in each regime.
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scales and market agents is the sovereign debt crisis. Moreover, the “across-scales”
interrelationship of the various regimes is one-directional, in that a low regime volatil-
ity state at low frequencies affects the oscillation state at higher frequencies. On the
contrary, high variability at a low frequency does not necessarily entail a high volatility
at higher frequencies. This follows empirical evidence that markets “cool off” after a
shock at low scales in a much shorter period than after a high-scale “fundamental” or
institutional regime switch.

Next, the impact of the global financial crisis can be observed from February 22,
2007 onwards (obs. 2,123). A meticulous consideration of Figs. 1 and 2 reveals that
the effect of the subprime crisis is not evident in the GBP exchange rate market in
the extent at which affected stock markets globally. Also in this case there is no
clear evidence of a contagion effect between stock and currency markets. Finally, the
Eurozone sovereign debt crisis is investigated (December 8, 2009).13 The estimated
wavelet components at all scales clearly indicate that the GBP currency market entered
into a high volatility state towards the beginning of the third quarter of 2008, that is
before the end of 2009 where the Eurozone crisis was more formally acknowledged
by the EU official bodies and IMF. Closer inspection of Figs. 1 and 2 reveals that
low- and high-frequency coefficients (corresponding to daily-yearly horizons) as well
as the long-run persistent component (mostly in the volatility series), exhibit a high
volatility regime after approximately the third quarter of 2008 (near obs. 400 in PII).
Via the power of the SIDWT analysis, these signs could have been safely considered
as precursor signals of an imminent crisis. Moreover, the high volatility state is not
uniform across the scales; at lower scales and especially at the finest scale a1, the time
span of the regime becomes wider. For return and volatility detail D1 (approximately
2–4 days) in periods PT and PII, the wavelet components display a high volatility
regime through the end of the sample. At scales D2–D4 the volatility state shows
a smaller amplitude. Consequently, for short-term traders the turbulence continues
within 2010, whereas for investors, the turmoil mostly lasts until the beginning of
2010. In all cases, a high volatility regime across all scales has been in effect since the
end of 2008.

Overall, the empirical investigation highlighted the advantages of the SIDWT in
comparison to the classical DWT and other undecimated DW transforms as well
as against Fourier analysis. The invariability of the SIDWT lead to an aligned sig-
nal association among all scales, while the assumption of a “dyadic-length” time
series that was relaxed allowed for a robustness analysis in any sub-sample regardless
of the number of observations. The new SIDWT coped effectively with “boundary
effects” as opposed to the other methods where the solution involved either taking
observations from the initial part of a T -length periodic series to finish computa-
tions at the end, or the entire series being duplicated/reflected about the last obser-
vation. This may be reasonable for some time series with strong seasonal effects
but cannot be applied universally in practice, as in the case of the GBP series.
This problem was surmounted via the use of the specialized “periodic extension”
pattern of the SIDWT. Finally, beyond the existing practice of the DWT, the new

13 The first Greek credit rating cut by Fitch corresponds to obs. 2,851 in PT.
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SIDWT entropy-based methodology lead to the optimal selection of the decomposition
level.

4 Conclusions

In contrast to simple aggregation/disaggregation at different time horizons, this study
relied on wavelet multiresolution to analyze the inherent dynamics of the GBP FX
market across different timescales (frequencies). This study attempted to reveal the
micro-dynamics of across-scale heterogeneity in the second moment (volatility), on
the basis of market agent behavior with different trading preferences and information
flows across scales. In addition, the scale-dependent duration of regime switches was
highlighted. Specifically, a high volatility regime initiated by a market information
flow appeared to persist longer at the lower frequency associated also with longer
trading horizons, as opposed to a high-frequency horizon. An asymmetry in volatility
dependence across different time horizons was identified as an important stylized
property. In that a low regime variability state at high scales identically affected the
oscillation state at lower scales, while on the contrary high volatility at a high scale
did not inevitably cause a high volatility at lower scales.

Technically this paper expanded the literature via the introduction of the Shift-
Invariant Discrete Wavelet Transform that allowed for non-dyadic-length time series
analysis and multi-scale point-to-point (aligned) comparison with respect to the initial
series, both of which are of utmost importance in modern econometric applications.
SIDWT utilized a new entropy-based methodology for the determination of the optimal
“depth” of the multiresolution analysis, instead of subjective or ad-hoc approaches.

The application of wavelet analysis in economic modelling is still in its infancy and
many properties are not yet fully explored. Multiscale wavelet decomposition could
become a valuable means of exploring the complex dynamics of economic time series,
as it allows for temporal and frequency analysis at the same time.
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